On the Neighbour Sum Distinguishing Index of Graphs with Bounded Maximum Average Degree
نویسندگان
چکیده
منابع مشابه
k-forested choosability of graphs with bounded maximum average degree
A proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. A graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $G$ such that each vertex receives a color from its own list. In this paper, we prov...
متن کاملk-forested choosability of graphs with bounded maximum average degree
a proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. a graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $g$ such that each vertex receives a color from its own list. in this paper, we prov...
متن کاملNeighbor sum distinguishing edge colorings of graphs with small maximum average degree
A proper edge-k-coloring of a graph G is an assignment of k colors 1, 2, · · · , k to the edges of G such that no two adjacent edges receive the same color. A neighbor sum distinguishing edge-k-coloring of G is a proper edge-k-coloring of G such that for each edge uv ∈ E(G), the sum of colors taken on the edges incident with u is different from the sum of colors taken on the edges incident with...
متن کاملK-forested Choosability of Graphs with Bounded Maximum Average Degree
A proper vertex coloring of a simple graph is k-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than k. A graph is k-forested qchoosable if for a given list of q colors associated with each vertex v, there exists a k-forested coloring of G such that each vertex receives a color from its own list. In this paper, we prove that the k-fore...
متن کاملAsymptotically optimal neighbour sum distinguishing colourings of graphs
Consider a simple graph G = (V,E) and its proper edge colouring c with the elements of the set {1, 2, . . . , k}. The colouring c is said to be neighbour sum distinguishing if for every pair of vertices u, v adjacent in G, the sum of colours of the edges incident with u is distinct from the corresponding sum for v. The smallest integer k for which such colouring exists is known as the neighbour...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Graphs and Combinatorics
سال: 2017
ISSN: 0911-0119,1435-5914
DOI: 10.1007/s00373-017-1822-3